In a certain region static electric and magnetic fields exist. The magnetic field is given by $\vec B = {B_0}\left( {\hat i + 2\hat j - 4\hat k} \right)$. If a test charge moving with a velocity $\vec v = {v_0}\left( {3\hat i - \hat j + 2\hat k} \right)$ experiences no force in that region, then the electric field in the region, in $SI\, units$, is

  • [JEE MAIN 2017]
  • A

    $\vec E =  - {v_0}{B_0}\left( {3\hat i - 2\hat j - 4\hat k} \right)$

  • B

    $\vec E =  - {v_0}{B_0}\left( {\hat i + \hat j + 7\hat k} \right)$

  • C

    $\vec E = {v_0}{B_0}\left( {14\hat j + 7\hat k} \right)$

  • D

    $\vec E =  - {v_0}{B_0}\left( {14\hat j + 7\hat k} \right)$

Similar Questions

A rectangular region $A B C D$ contains a uniform magnetic field $B_0$ directed perpendicular to the plane of the rectangle. A narrow stream of charged particles moving perpendicularly to the side $AB$ enters this region and is ejected through the adjacent side $B C$ suffering a deflection through $30^{\circ}$. In order to increase this deflection to $60^{\circ}$, the magnetic field has to be

  • [KVPY 2021]

In toroid magnetic field on axis will be the radius $=0.5\, cm ,$ current $=1.5\, A ,$ turns $=250,$ permeability $=700$ (in Tesla)

  • [AIIMS 2019]

A $10 \;eV$ electron is circulating in a plane at right angles to a uniform field at magnetic induction $10^{-4} \;W b / m^{2}(=1.0$ gauss), the orbital radius of electron is ........ $cm$

  • [AIPMT 1996]

A particle of mass $m = 1.67 \times 10^{-27}\, kg$ and charge $q = 1.6 \times 10^{-19} \, C$ enters a region of uniform magnetic field of strength $1$ $tesla$ along the direction shown in the figure. the particle leaves the magnetic field at point $D,$ then the distance $CD$ is :-

A particle having charge of $10\,\mu C$ and $1\,\mu g$ mass moves along circular path of $10\, cm$ radius in the effect of uniform magnetic field of $0.1\, T$. When charge is at point $'P'$, a uniform electric field applied in the region so charge moves tangentially with constant speed. The value of electric field is......$V/m$